BLT Tutorial Guide

BLT Team

Jul 21, 2021

Table of Contents

BLT at a Glance 3
Questions 5
Contributions 7
Authors 9
4.1 UserTutorial e e e e e e e 9
42 APIDocumentation e e e e e e e e e e e e e 40
43 Developer Guide L 62

BLT Tutorial Guide

BLT is a composition of CMake macros and several widely used open source tools assembled to simplify HPC software
development.

BLT was released by Lawrence Livermore National Laboratory (LLNL) under a BSD-style open source license. It is
developed on GitHub under LLNL’s GitHub organization.

Note: BLT officially supports CMake 3.8 and above. However we only print a warning if you are below this version.
Some features in earlier versions may or may not work. Use at your own risk.

Table of Contents 1

https://github.com/LLNL/blt

BLT Tutorial Guide

2 Table of Contents

CHAPTER 1

BLT at a Glance

» Simplifies setting up a CMake-based build system
— CMake macros for:
% Creating libraries and executables
* Managing compiler flags
Managing external dependencies
— Handles differences across CMake versions
— Multi-platform support (HPC Platforms, OSX, Windows)
 Batteries included
— Built-in support for HPC Basics: MPI, OpenMP, CUDA, and HIP
— Built-in support for unit testing in C/C++ and Fortran
 Streamlines development processes
— Support for documentation generation
— Support for code health tools:

* Runtime and static analysis, benchmarking

BLT Tutorial Guide

4 Chapter 1. BLT at a Glance

CHAPTER 2

Questions

Any questions can be sent to blt-dev@lInl.gov. If you are an LLNL employee or collaborator, we have an internal
Microsoft Teams group chat named “BLT” as well.

mailto:blt-dev@llnl.gov

BLT Tutorial Guide

6 Chapter 2. Questions

CHAPTER 3

Contributions

We welcome all kinds of contributions: new features, bug fixes, documentation edits.

To contribute, make a pull request, with deve lop as the destination branch. We use CI testing and your branch must
pass these tests before being merged.

For more information, see the contributing guide.

https://github.com/LLNL/blt/pulls
https://github.com/LLNL/blt/blob/develop/CONTRIBUTING.md

BLT Tutorial Guide

8 Chapter 3. Contributions

CHAPTER 4

Authors

Thanks to all of BLT’s contributors.

4.1

User Tutorial

This tutorial provides instructions for:

Adding BLT to a CMake project

Building, linking, and installing libraries and executables

Setting up unit tests with GTest

Setting up host-config files to handle multiple platform configurations
Using external project dependencies

Exporting your project’s CMake targets for outside projects to use

Creating documentation with Sphinx and Doxygen

The two example CMake projects used are included in BLT’s source tree at:

<blt-dir>/cmake/docs/tutorial/bare_bones

<blt-dir>/cmake/docs/tutorial/calc_pi

Here are direct links to the projects in BLT’s GitHub repo:

https://github.com/LLNL/blt/tree/develop/docs/tutorial/bare_bones
https://github.com/LLNL/blt/tree/develop/docs/tutorial/calc_pi

bare_bones provides a minimum template for starting a new project and calc_pi provides several examples that
calculate the value of 7 by approximating the integral f(x) = fol 4/(1 + x?) using numerical integration. The code is
adapted from ANL’s using MPI examples.

Most of the tutorial focuses on the BLT features used to create the complete calc_pi project.

https://github.com/LLNL/blt/graphs/contributors
https://github.com/LLNL/blt/tree/develop/docs/tutorial/bare_bones
https://github.com/LLNL/blt/tree/develop/docs/tutorial/calc_pi
https://www.mcs.anl.gov/research/projects/mpi/usingmpi/examples-usingmpi/simplempi/cpi_c.html

BLT Tutorial Guide

The tutorial requires a C++ compiler and CMake, we recommend using CMake 3.8.0 or newer. Parts of the tutorial
also require MPI, CUDA, Sphinx, and Doxygen.

We provide instructions to build and run these projects on several LLNL HPC platforms and ORNL’s Summit platform.
See Host-configs.

4.1.1 Getting Started

BLT is easy to include in your CMake project whether it is an existing project or you are starting from scratch. This
tutorial assumes you are using git and the CMake Makefile generator but those commands can easily be changed or
ignored.

Include BLT in your Git Repository

There are two standard choices for including the BLT source in your repository:
Add BLT as a git submodule

This example adds BLT as a submodule, commits, and pushes the changes to your repository.

cd <your repository>

git submodule add https://github.com/LLNL/blt.git blt
git commit -m "Adding BLT"

git push

Copy BLT into a subdirectory in your repository

This example will clone a copy of BLT into your repository and remove the unneeded git files from the clone. It then
commits and pushes the changes to your repository.

cd <your repository>

git clone https://github.com/LLNL/blt.git
rm -rf blt/.git

git commit -m "Adding BLT"

git push

Include BLT in your CMake Project

In most projects, including BLT is as simple as including the following CMake line in your base CMakeLists.txt
after your project () call.

include (b1t /SetupBLT.cmake)

This enables all of BLT’s features in your project.

However if your project is likely to be used by other projects. The following is recommended:

if (DEFINED BLT_SOURCE_DIR)
Support having a shared BLT outside of the repository if given a BLT_SOURCE_DIR
if (NOT EXISTS S${BLT_SOURCE_DIR}/SetupBLT.cmake)
message (FATAL_ERROR "Given BLT_SOURCE_DIR does not contain SetupBLT.cmake")
endif ()
else ()
Use internal BLT if no BLT_SOURCE_DIR is given
set (BLT_SOURCE_DIR "${PROJECT_SOURCE_DIR}/cmake/blt" CACHE PATH "")

(continues on next page)

10 Chapter 4. Authors

BLT Tutorial Guide

(continued from previous page)

if (NOT EXISTS S${BLT_SOURCE_DIR}/SetupBLT.cmake)
message (FATAL_ERROR

"The BLT git submodule is not present. "
"Either run the following two commands in your git repository: \n"
" git submodule init\n"
" git submodule update\n"
"Or add -DBLT_SOURCE_DIR=/path/to/blt to your CMake command.")

endif ()

endif ()

Default to C++11 if not set so GTest/GMock can build
if (NOT BLT_CXX_STD)

set (BLT_CXX_STD "c++11" CACHE STRING "")
endif ()

include ($ {BLT_SOURCE_DIR}/SetupBLT.cmake)

This is a robust way of setting up BLT and supports an optional external BLT source directory via the command line
option BLT_SOURCE_DIR. Using the external BLT source directory allows you to use single BLT instance across
multiple independent CMake projects. This also adds helpful error messages if the BLT submodule is missing as well
as the commands to solve it.

Running CMake

To configure a project with CMake, first create a build directory and cd into it. Then run cmake with the path to your
project.

cd <your project>
mkdir build

cd build

cmake

If you are using BLT outside of your project pass the location of BLT as follows:

cd <your project>

mkdir build

cd build

cmake —-DBLT_SOURCE_DIR="path/to/blt"

Example: Bare Bones BLT Project

The bare_bones example project shows you some of BLT’s built-in features. It demonstrates the bare minimum
required for testing purposes.

Here is the entire CMakeLists.txt file needed for a bare bones project:

cmake_minimum_required (VERSION 3.38)
project (bare_bones)

include (/path/to/blt/SetupBLT.cmake)

BLT also enforces some best practices for building, such as not allowing in-source builds. This means that BLT
prevents you from generating a project configuration directly in your project.

For example if you run the following commands:

4.1. User Tutorial 11

BLT Tutorial Guide

cd <BLT repository>/docs/tutorial/bare_bones
cmake

you will get the following error:

CMake Error at blt/SetupBLT.cmake:59 (message) :
In-source builds are not supported. Please remove CMakeCache.txt from the
'src' dir and configure an out-of-source build in another directory.

Call Stack (most recent call first):
CMakelists.txt:55 (include)

—-— Configuring incomplete, errors occurred!

To correctly run cmake, create a build directory and run cmake from there:

cd <BLT repository>/docs/bare_bones
mkdir build

cd build

cmake

This will generate a configured Make £1 1e in your build directory to build Bare Bones project. The generated makefile
includes gtest and several built-in BLT smoke tests, depending on the features that you have enabled in your build.

Note: Smoke tests are designed to show when basic functionality is not working. For example, if you have turned on
MPI in your project but the MPI compiler wrapper cannot produce an executable that runs even the most basic MPI
code, the b1t_mpi_smoke test will fail. This helps you know that the problem doesn’t lie in your own code but in
the building/linking of MPI.

To build the project, use the following command:

’make

As with any other make-based project, you can utilize parallel job tasks to speed up the build with the following
command:

’make -38

Next, run all tests in this project with the following command:

’make test

If everything went correctly, you should have the following output:

Running tests...
Test project blt/docs/tutorial/bare_bones/build
Start 1: blt_gtest_smoke
1/1 Test #1: blt_gtest_smokeueuuueno.. Passed 0.01 sec

100% tests passed, 0 tests failed out of 1

Total Test time (real) = 0.10 sec

Note that the default options for bare_bones only include a single test b1t_gtest_smoke. As we will see later
on, BLT includes additional smoke tests that are activated when BLT is configured with other options enabled, like
Fortran, MPI, OpenMP, and CUDA.

12 Chapter 4. Authors

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

BLT Tutorial Guide

Example files

Files related to setting up the Bare Bones project:

CMakeLists.txt

cmake_minimum_required (VERSION 3.8)
project (bare_bones)

Note: This 1is specific to running our tests and shouldn't be exported to,
—documentation
if (NOT BLT_SOURCE_DIR)
set (BLT_SOURCE_DIR "${CMAKE_ CURRENT_SOURCE_DIR}/../../..™)
endif ()

blt_tutorial include blt_start
if (DEFINED BLT_SOURCE_DIR)
Support having a shared BLT outside of the repository if given a BLT _SOURCE_DIR
if (NOT EXISTS ${BLT_SOURCE_DIR}/SetupBLT.cmake)
message (FATAL_ERROR "Given BLT_SOURCE_DIR does not contain SetupBLT.cmake")
endif ()
else ()
Use internal BLT if no BLT_SOURCE_DIR is given
set (BLT_SOURCE_DIR "${PROJECT_SOURCE_DIR}/cmake/blt" CACHE PATH "")
if (NOT EXISTS S${BLT_SOURCE_DIR}/SetupBLT.cmake)
message (FATAL_ERROR
"The BLT git submodule is not present.
"Either run the following two commands in your git repository: \n"

" git submodule init\n"
" git submodule update\n"
"Or add -DBLT_SOURCE_DIR=/path/to/blt to your CMake command.")
endif ()
endif ()

Default to C++11 if not set so GTest/GMock can build
if (NOT BLT_CXX_STD)

set (BLT_CXX_STD "c++11" CACHE STRING "")
endif ()

include (${BLT_SOURCE_DIR}/SetupBLT.cmake)
_blt_tutorial_include blt_end

4.1.2 Creating Targets

In the previous section, we learned the basics about how to create a CMake project with BLT, how to configure the
project and how to build, and test BLT’s built-in third party libraries.

We now move on to creating CMake targets using two of BLT’s core macros: blt_add_library and blt_add_executable.

4.1. User Tutorial 13

BLT Tutorial Guide

We begin with a simple executable that calculates 7 by numerical integration, example_1. We then extract that code
into a library, which we link into a new executable, example_2.

Example 1: Stand-alone Executable

This example is as basic as it gets. After setting up a BLT CMake project, like the Bare Bones project in the previous
section, we can start using BLT’s macros.

Creating a stand-alone executable is as simple as calling the following macro:

blt_add_executable (NAME example_1
SOURCES example_1.cpp)

This tells CMake to create an executable, named example_ 1, with one source file, example_1.cpp.

You can create this project yourself or you can run the already provided tutorial/calc_pi project. For ease
of use, we have combined many examples into this one CMake project. You can create the executable <build
dir>/bin/example_1, by running the following commands:

cd <BLT repository>/docs/tutorial/calc_pi
mkdir build

cd build
cmake —-DBLT_SOURCE_DIR=../../..
make

blt_add_executable

This is one of the core macros that enables BLT to simplify our CMake-based project. It unifies many CMake calls
into one easy to use macro while creating a CMake executable target with the given parameters. It also greatly
simplifies the usage of internal and external dependencies. The full list of supported parameters can be found on the
blt _add executable API documentation.

Example 2: Executable with a Library

This example is a bit more exciting. This time we are creating a library that calculates the value of pi and then linking
that library into an executable.

First, we create the library with the following BLT code:

blt_add_library(NAME calc_pi
HEADERS calc_pi.hpp calc_pi_exports.h
SOURCES calc_pi.cpp)

Just like before, this creates a CMake library target that will get built to <build dir>/1lib/libcalc_pi.a.

Next, we create an executable named example_2 and link in the previously created library target:

blt_add_executable (NAME example_2
SOURCES example_2.cpp
DEPENDS_ON calc_pi)

The DEPENDS_ON parameter properly links the previously defined library into this executable without any more work
or extra CMake function calls.

blt_add_library

14 Chapter 4. Authors

BLT Tutorial Guide

This is another core BLT macro. It creates a CMake library target and associates the given sources and headers along
with handling dependencies the same way as bit_add_executable does. It defaults to building a static library unless
you override it with SHARED or with the global CMake option BUILD_SHARED_LIBS. The full list of supported
parameters can be found on the blt_add_library API documentation.

4.1.3 Adding Tests
BLT has a built-in copy of the GoogleTest framework (gtest) for C and C++ unit tests and the Fortran Unit Test
Framework (FRUIT) for Fortran unit tests.

Each GoogleTest or FRUIT file may contain multiple tests and is compiled into its own executable that can be run
directly or as a make target.

In this section, we give a brief overview of GoogleTest and discuss how to add unit tests using the b1t _add_test ()
macro.

Configuring Tests within BLT

Unit testing in BLT is controlled by the ENABLE_TESTS cmake option and is on by default.

For additional configuration granularity, BLT provides configuration options for the individual built-in unit testing
libraries. The following additional options are available when ENABLE_TESTS is on:

ENABLE_GTEST Option to enable gtest (default: ON).

ENABLE_GMOCK Option to control gmock (default: OFF). Since gmock requires gtest, gtest is also enabled whenever
ENABLE_GMOCK is true, regardless of the value of ENABLE_GTEST.

ENABLE_FRUIT Option to control FRUIT (Default ON). It is only active when ENABLE_FORTRAN is enabled.

GoogleTest (C/C++ Tests)

The contents of a typical GoogleTest file look like this:

#include "gtest/gtest.h"
#include ... // include headers needed to compile tests in file
//

TEST (<test_case_name>, <test_name_1>)
{

// Test 1 code here...

// ASSERT_EQ(...);
}

TEST (<test_case_name>, <test_name_2>)
{

// Test 2 code here...

// EXPECT_TRUE(...);

Each unit test is defined by the GoogleTest TEST () macro which accepts a test case name identifier, such as the name
of the C++ class being tested, and a fest name, which indicates the functionality being verified by the test. Within a
test, failure of logical assertions (macros prefixed by ASSERT_) will cause the test to fail immediately, while failures

4.1. User Tutorial 15

https://github.com/google/googletest
https://sourceforge.net/projects/fortranxunit/
https://sourceforge.net/projects/fortranxunit/

BLT Tutorial Guide

of expected values (macros prefixed by EXPECT_) will cause the test to fail, but will continue running code within
the test.

Note that the GoogleTest framework will generate a main () routine for each test file if it is not explicitly provided.
However, sometimes it is necessary to provide amain () routine that contains operation to run before or after the unit
tests in a file; e.g., initialization code or pre-/post-processing operations. A main () routine provided in a test file
should be placed at the end of the file in which it resides.

Note that GoogleTest is initialized before MPT_Init () is called.
Other GoogleTest features, such as fixtures and mock objects (gmock) may be used as well.

See the GoogleTest Primer for a discussion of GoogleTest concepts, how to use them, and a listing of available
assertion macros, etc.

FRUIT (Fortran Tests)

Fortran unit tests using the FRUIT framework are similar in structure to the GoogleTest tests for C and C++ described
above.

The contents of a typical FRUIT test file look like this:

module <test_case_name>
use iso_c_binding
use fruit
use <your_code_module_name>
implicit none

contains

subroutine test_name_1
! Test 1 code here...
! call assert_equals(...)
end subroutine test_name_1

subroutine test_name_2

! Test 2 code here...

! call assert_true(...)
end subroutine test_name_2

The tests in a FRUIT test file are placed in a Fortran module named for the fest case name, such as the name of the C++
class whose Fortran interface is being tested. Each unit test is in its own Fortran subroutine named for the fest name,
which indicates the functionality being verified by the unit test. Within each unit test, logical assertions are defined
using FRUIT methods. Failure of expected values will cause the test to fail, but other tests will continue to run.

Note that each FRUIT test file defines an executable Fortran program. The program is defined at the end of the test file
and is organized as follows:

program fortran_test
use fruit
use <your_component_unit_name>
implicit none
logical ok

! initialize fruit
call init_fruit

! run tests

(continues on next page)

16 Chapter 4. Authors

https://github.com/google/googletest/blob/master/googletest/docs/Primer.md

BLT Tutorial Guide

(continued from previous page)

call test_name_1
call test_name_2

! compile summary and finalize fruit
call fruit_summary
call fruit_finalize

call is_all_ successful (ok)
if (.not. ok) then
call exit (1)
endif
end program fortran_test

Please refer to the FRUIT documentation for more information.

Adding a BLT unit test

After writing a unit test, we add it to the project’s build system by first generating an executable for the test using the
blt_add_executable () macro. We then register the test using the blt_add_test () macro.

blt_add_test

This macro generates a named unit test from an existing executable and allows users to pass in command line argu-
ments.

Returning to our running example (see Creating Targets), let’s add a simple test for the calc_pi library, which has
a single function with signature:

double calc_pi (int num_intervals);

We add a simple unit test that invokes calc_pi () and compares the result to 7, within a given tolerance (1e-6).
Here is the test code:

#include <gtest/gtest.h>
#include "calc_pi.hpp"

TEST (calc_pi, serial_example)

{
double PI_REF = 3.141592653589793238462643;
ASSERT_NEAR (calc_pi(1000),PI_REF,le-06);

To add this test to the build system, we first generate a test executable:

blt_add_executable (NAME test_1
SOURCES test_1.cpp
DEPENDS_ON calc_pi gtest)

Note that this test executable depends on two targets: calc_pi and gtest.

We then register this executable as a test:

blt_add_test (NAME test_1
COMMAND test_1)

4.1. User Tutorial 17

https://sourceforge.net/projects/fortranxunit/

BLT Tutorial Guide

Note: The COMMAND parameter can be used to pass arguments into a test executable.

Note: The NAME of the test can be different from the test executable, which is passed in through the COMMAND
parameter.

Running Tests and Examples

To run the tests, type the following command in the build directory:

$ make test

This will run all tests through cmake’s ctest tool and report a summary of passes and failures. Detailed output on
individual tests is suppressed.

If a test fails, you can invoke its executable directly to see the detailed output of which checks passed or failed. This
is especially useful when you are modifying or adding code and need to understand how unit test details are working,
for example.

Note: You can pass arguments to ctest via the TEST_ARGS parameter, e.g. make test TEST_ARGS="..."
Useful arguments include:

-R Regular expression filtering of tests. E.g. —~R foo only runs tests whose names contain foo -j Run tests in parallel,
E.g. —j 16 will run tests using 16 processors -VV (Very verbose) Dump test output to stdout

Converting CTest XML to JUnit
It is often useful to convert CTest’s XML output to JUnit for various reporting tools such as CI. This is a two step
process.

First run your test suite with one of the following commands to output with CTest’s XML and to turn off compressed
output:

make CTEST_OUTPUT_ON_FAILURE=1 test ARGS="--no-compress—-output -T Test -VV -738"
ctest -DCTEST_OUTPUT_ON_FAILURE=1 --no-compress-output -T Test -VV -j8

Then convert the CTest XML file to JUnit’s format with the XSL file included in BLT. This can be done in many ways,
but most Linux or Unix machines come with a program called xs1ltproc

cd build-dir
xsltproc -o junit.xml path/to/blt/tests/ctest-to-junit.xsl Testing/*/Test.xml

Then point the reporting tool to the outputted junit .xml file.

4.1.4 Host-configs

To capture (and revision control) build options, third party library paths, etc., we recommend using CMake’s initial-
cache file mechanism. This feature allows you to pass a file to CMake that provides variables to bootstrap the config-
uration process.

You can pass initial-cache files to cmake via the ~C command line option.

18 Chapter 4. Authors

BLT Tutorial Guide

cmake —-C config_file.cmake

We call these initial-cache files host—config files since we typically create a file for each platform or for specific
hosts, if necessary.

These files use standard CMake commands. CMake set () commands need to specify CACHE as follows:

set (CMAKE_VARIABLE_NAME {VALUE} CACHE PATH "")

Here is a snippet from a host-config file that specifies compiler details for using specific gcc (version 4.9.3 in this case)
on the LLNL Pascal cluster.

set (GCC_HOME "/usr/tce")
set (CMAKE_C_COMPILER "${GCC_HOME}/bin/gcc" CACHE PATH "™)
set (CMAKE_CXX_COMPILER "${GCC_HOME}/bin/g++" CACHE PATH "")

Fortran support
set (ENABLE_FORTRAN ON CACHE BOOL "")
set (CMAKE_Fortran_COMPILER "${GCC_HOME}/bin/gfortran" CACHE PATH "")

Building and Testing on Pascal

Since compute nodes on the Pascal cluster have CPUs and GPUs, here is how you can use the host-config file to
configure a build of the calc_pi project with MPI and CUDA enabled on Pascal:

create build dir

mkdir build

cd build

configure using host-config

cmake -C ../../host-configs/1l1lnl/toss_3_x86_64_1ib/gcc@4.9.3_nvcc.cmake

After building (make), you can run make test on a batch node (where the GPUs reside) to run the unit tests that
are using MPI and CUDA:

bash-4.1$ salloc —-A <valid bank>
bash-4.1$ make
bash-4.1$ make test

Running tests...
Test project blt/docs/tutorial/calc_pi/build
Start 1: test_1

1/8 Test #1: test_ 1 ittt et e e e Passed 0.01 sec
Start 2: test_2

2/8 Test #2: Lest 2 vttt e e e e Passed 2.79 sec
Start 3: test_3

3/8 Test #3: test_ 3 ittt e e e e Passed 0.54 sec
Start 4: blt_gtest_smoke

4/8 Test #4: blt_gtest_smoke Passed 0.01 sec
Start 5: blt_fruit_smoke

5/8 Test #5: blt_fruit_smokeciiiiieen.. Passed 0.01 sec
Start 6: blt_mpi_smoke

6/8 Test #6: blt_mpi_smokecociieo... Passed 2.82 sec
Start 7: blt_cuda_smoke

7/8 Test #7: blt_cuda_smokecuiiueuneee.. Passed 0.48 sec
Start 8: blt_cuda_runtime_smoke

8/8 Test #8: blt_cuda_runtime_smoke Passed 0.11 sec

(continues on next page)

4.1. User Tutorial 19

BLT Tutorial Guide

(continued from previous page)

100% tests passed, 0 tests failed out of 8

Total Test time (real) = 6.80 sec

Building and Testing on Ray

Here is how you can use the host-config file to configure a build of the calc_pi project with MPI and CUDA enabled
on the LLNL BlueOS Ray cluster:

create build dir

mkdir build

cd build

configure using host-config

cmake -C ../../host-configs/1llnl/blueos_3_ppc64le_ib_p9/clang@upstream nvcc_xlf.cmake

—

And here is how to build and test the code on Ray:

bash-4.2$ lalloc 1 -G <valid group>
bash-4.2$ make
bash-4.2$ make test

Running tests...
Test project projects/blt/docs/tutorial/calc_pi/build
Start 1: test_1

1/7 Test #1: test_ L it ettt ettt Passed 0.01 sec
Start 2: test_2

2/7 Test #2: test 2 ittt ettt Passed 1.24 sec
Start 3: test_3

3/7 Test #3: test_ 3 ittt et e e Passed 0.17 sec
Start 4: blt_gtest_smoke

4/7 Test #4: blt_gtest_smoke Passed 0.01 sec
Start 5: blt_mpi_smoke

5/7 Test #5: blt_mpi_smokeciiueeeenn.. Passed 0.82 sec
Start 6: blt_cuda_smoke

6/7 Test #6: blt_cuda_sSmokeiieieennennn Passed 0.15 sec
Start 7: blt_cuda_runtime_smoke

7/7 Test #7: blt_cuda_runtime_smoke Passed 0.04 sec

100% tests passed, 0 tests failed out of 7

Total Test time (real) = 2.47 sec

Building and Testing on Summit

Here is how you can use the host-config file to configure a build of the calc_pi project with MPI and CUDA enabled
on the OLCF Summit cluster:

load the cmake module
module load cmake

create build dir
mkdir build

(continues on next page)

20 Chapter 4. Authors

BLT Tutorial Guide

(continued from previous page)

cd build
configure using host-config
cmake —-C ../../host-configs/olcf/summit/gcc@6.4.0_nvcc.cmake

And here is how to build and test the code on Summit:

bash-4.2$ bsub -W 30 -nnodes 1 -P <valid project> -Is /bin/bash
bash-4.2$ module load gcc cuda

bash-4.2$ make

bash-4.2$ make test

Running tests...
Test project /projects/blt/docs/tutorial/calc_pi/build
Start 1: test_1

1/11 Test #1: test I vttt ettt ettt Passed 0.00 sec
Start 2: test_2
2/11 Test #2: test_ 2 ittt ittt et e e Passed 1.03 sec
Start 3: test_3
3/11 Test #3: test_ 3 ittt e e Passed 0.21 sec
Start 4: blt_gtest_smoke
4/11 Test #4: blt_gtest_smokecoiuiuen.. Passed 0.00 sec
Start 5: blt_fruit_smoke
5/11 Test #5: blt_fruit_smokeviiiieennen.. Passed 0.00 sec
Start 6: blt_mpi_smoke
6/11 Test #6: blt_mpi_smokeciueiin... Passed 0.76 sec
Start 7: blt_cuda_smoke
7/11 Test #7: blt_cuda_smokeouiueuueeenen.. Passed 0.22 sec
Start 8: blt_cuda_runtime_smoke
8/11 Test #8: blt_cuda_runtime_smoke Passed 0.07 sec
Start 9: blt_cuda_version_smoke
9/11 Test #9: blt_cuda_version_smoke Passed 0.06 sec
Start 10: blt_cuda_mpi_smoke
10/11 Test #10: blt_cuda_mpi_smoke Passed 0.80 sec
Start 11: blt_cuda_gtest_smoke
11/11 Test #11: blt_cuda_gtest_smoke Passed 0.21 sec

100% tests passed, 0 tests failed out of 11

Total Test time (real) = 3.39 sec

Example Host-configs

Basic TOSS3 (for example: Quartz) host-config that has C, C++, and Fortran Compilers along with MPI support:

gcc@8.3.1 host-config

Copyright (c) 2017-2021, Lawrence Livermore National Security, LLC and

other BLT Project Developers. See the top-level LICENSE file for details

#

SPDX-License—-Identifier: (BSD-3-Clause)

,,
Example host-config file for the quartz cluster at LLNL

,,
#

(continues on next page)

4.1. User Tutorial 21

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

)

43

44

45

46

BLT Tutorial Guide

(continued from previous page)

This file provides CMake with paths / details for:
C,C++, & Fortran compilers + MPI
#

set (GCC_VERSION "gcc-8.3.1")
set (GCC_HOME "/usr/tce/packages/gcc/${GCC_VERSION}")

¢ compiler
set (CMAKE_C_COMPILER "${GCC_HOME}/bin/gcc" CACHE PATH "")

cpp compiler
set (CMAKE_CXX_COMPILER "${GCC_HOME}/bin/g++" CACHE PATH "")

fortran support
set (ENABLE_FORTRAN ON CACHE BOOL "")

fortran compiler
set (CMAKE_Fortran_COMPILER "S${GCC_HOME}/bin/gfortran" CACHE PATH "")

set (ENABLE_MPI ON CACHE BOOL "")

set (MPI_HOME "/usr/tce/packages/mvapich2/mvapich2-2.3-${GCC_VERSION}"
—CACHE PATH "™)

set (MPI_C_COMPILER "${MPI_HOME}/bin/mpicc" CACHE PATH "")
set (MPI_CXX_COMPILER "${MPI_HOME}/bin/mpicxx" CACHE PATH "")
set (MPI_Fortran_ COMPILER "${MPI_HOME}/bin/mpif90" CACHE PATH "")

set (MPIEXEC "/usr/bin/srun" CACHE PATH "")
set (MPIEXEC_NUMPROC_FLAG "-n" CACHE PATH "")

Here are the full example host-config files for LLNL’s Pascal, Ray, and Quartz Clusters that uses the default compilers
on the system:

gcc@4.9.3 host-config

Copyright (c) 2017-2021, Lawrence Livermore National Security, LLC and

other BLT Project Developers. See the top-level LICENSE file for details

#

SPDX-License-Identifier: (BSD-3-Clause)

,,
Example host-config file for the Pascal cluster at LLNL

,,

This file provides CMake with paths / details for:
C,C++, & Fortran compilers + MPI & CUDA

(continues on next page)

22 Chapter 4. Authors

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

BLT Tutorial Guide

(continued from previous page)

gcc@4.9.3 compilers

_blt_tutorial_ compiler._config_start

set (GCC_HOME "/usr/tce")

set (CMAKE_C_COMPILER "${GCC_HOME}/bin/gcc" CACHE PATH "")
set (CMAKE_CXX_COMPILER "${GCC_HOME}/bin/g++" CACHE PATH "")

Fortran support

set (ENABLE_FORTRAN ON CACHE BOOL "")

set (CMAKE_Fortran_COMPILER "${GCC_HOME}/bin/gfortran" CACHE PATH "")
_blt_tutorial_ compiler_config_end

_blt_tutorial_mpi_config start
set (ENABLE_MPI ON CACHE BOOL "")

set (MPI_HOME "/usr/tce/packages/mvapich2/mvapich2-2.3-gcc-4.9.3/")
set (MPI_C_COMPILER "S${MPI_HOME}/bin/mpicc" CACHE PATH "")

set (MPI_CXX_COMPILER "${MPI_HOME}/bin/mpicxx" CACHE PATH "")

set (MPI_Fortran_COMPILER "${MPI_HOME}/bin/mpif90" CACHE PATH "")
_blt_tutorial_mpi_config_end

_blt_tutorial cuda_config_start
set (ENABLE_CUDA ON CACHE BOOL "")

set (CUDA_TOOLKIT_ROOT_DIR "/usr/tce/packages/cuda/cuda-10.1.168" CACHE PATH "")
set (CMAKE_CUDA_COMPILER "S${CUDA_TOOLKIT_ROOT_DIR}/bin/nvcc" CACHE PATH "")
set (CMAKE_CUDA_HOST_COMPILER "S${CMAKE_CXX_COMPILER}" CACHE PATH "")

set (CMAKE_CUDA_ARCHITECTURES "70" CACHE STRING "")

set (_cuda_arch "sm_${CMAKE_CUDA_ARCHITECTURES}")

set (CMAKE_CUDA_FLAGS "-restrict -arch ${_cuda_arch} -std=c++11 --expt-extended-lambda,,
—=G"

CACHE STRING "")
set (CUDA_SEPARABLE_COMPILATION ON CACHE BOOL "")

_blt_tutorial cuda_config_end

More complicated BlueOS host-config that has C, C++, MPI, and CUDA support:

clang@upstream C++17 host-config

Copyright (c) 2017-2021, Lawrence Livermore National Security, LLC and
other BLT Project Developers. See the top-level LICENSE file for details
#

SPDX-License-Identifier: (BSD-3-Clause)

Example host-config file for the blue_os cluster at LLNL

(continues on next page)

4.1. User Tutorial 23

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

)

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59
60

61

BLT Tutorial Guide

(continued from previous page)

__
#

This file provides CMake with paths / details for:

C/C++: Clang with GCC 8.3.1 toolchain with C++17 support

Cuda

MPT

#

,,

Compilers

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

set (_CLANG_VERSION "clang-upstream-2019.08.15")
set (_CLANG_DIR "/usr/tce/packages/clang/${_CLANG_VERSION}")
set (_GCC_DIR "/usr/tce/packages/gcc/gcc—-8.3.1")

set (CMAKE_C_COMPILER "${_CLANG_DIR}/bin/clang" CACHE PATH "")
set (CMAKE_CXX_COMPILER "${_CLANG_DIR}/bin/clang++" CACHE PATH "")

set (BLT_CXX_STD "c++17" CACHE STRING "")

set (CMAKE_C_FLAGS "--gcc-toolchain=${_GCC_DIR}" CACHE PATH "")
set (CMAKE_CXX_FLAGS "--gcc-toolchain=${_GCC_DIR}" CACHE PATH "")
set (BLT_EXE_LINKER_FLAGS " -Wl,-rpath, ${_GCC_DIR}/1lib" CACHE PATH "Adds a missing,,

—libstdc++ rpath")

set (ENABLE_MPI ON CACHE BOOL "")

set (_MPI_BASE_DIR "/usr/tce/packages/spectrum-mpi/spectrum-mpi-rolling-release—-${_
—CLANG_VERSION}")

set (MPI_C_COMPILER "${_MPI_BASE_DIR}/bin/mpicc" CACHE PATH "")
set (MPI_CXX_COMPILER "${_MPI_BASE DIR}/bin/mpicxx" CACHE PATH "")

set (ENABLE_CUDA ON CACHE BOOL "")
set (CUDA_TOOLKIT_ROOT_DIR "/usr/tce/packages/cuda/cuda-11.0.182" CACHE PATH "")

set (CMAKE_CUDA_COMPILER "${CUDA_TOOLKIT_ROOT_DIR}/bin/nvcc" CACHE PATH "")
set (CMAKE_CUDA_HOST_COMPILER "${CMAKE_CXX_COMPILER}" CACHE PATH "")

set (CMAKE_CUDA_ARCHITECTURES "70"™ CACHE STRING "")

set (_cuda_arch "sm_S${CMAKE_CUDA_ARCHITECTURES}")

set (CMAKE_CUDA_FLAGS "-Xcompiler=--gcc-toolchain=${_GCC_DIR} -restrict —-arch ${_cuda_
—arch} —-std=c++17 —--expt-extended-lambda -G" CACHE STRING "")

nvcc does not like gtest's 'pthreads' flag
set (gtest_disable_pthreads ON CACHE BOOL "")

(continues on next page)

24 Chapter 4. Authors

62

63

64

65

66

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

BLT Tutorial Guide

(continued from previous page)

set (ENABLE_GTEST_DEATH_TESTS OFF CACHE BOOL "")

Very specific fix for working around CMake adding implicit link directories_,
—returned by the BlueOS

compilers to link CUDA executables

set (BLT_CMAKE_IMPLICIT_LINK_DIRECTORIES_EXCLUDE "/usr/tce/packages/gcc/gcc—-4.9.3/
—1ib64/gcc/powerpcb4le-unknown-linux—-gnu/4.9.3; /usr/tce/packages/gcc/gcc-4.9.3/1ib64
—" CACHE STRING "")

Here is a full example host-config file for an OSX laptop, using a set of dependencies built with Spack:

0OSX clang@7.3.0 host-config

Copyright (c) 2017-2021, Lawrence Livermore National Security, LLC and

other BLT Project Developers. See the top-level LICENSE file for details
#

SPDX-License—-Identifier: (BSD-3-Clause)

#tHE#AF A FA AR AHAF AR A AR F AR F A AR AR AR AR AR A A AR A A
host—-config for naples
FHFFHRAAAAFFFFRAARAAFFFRAAAAAFFRRAAAAFFFRRAARAAFFFREAAAAFFFRAAAAAFFFRAAAA

#HARFAAAAFAHARARAAAARARAEAAFARARA AR AR A AR RA AR R A AAA R AAHAAA
Dependencies were built with spack (https://github.com/11nl/spack)
#FHARHAAAAAAHARAREAAAARARA A AHA R A AR R A AR AAAHA A A AR EAAHAAA
spack install cmake@3.8.2

spack install mpich

spack install py-sphinx

spack activate py-sphinx

spack install doxygen

HH H W H

#HA#AA A F AR FAA A FAF AR A A RAF AR A EA R A AR A AR A AR F AR AR AR HS

cmake path

FHARFAAAAAAHARA A AAARA R A AFA A A AA AR R EA AR RA A AHA R A AA AR A H AR

/Users/harrison37/Work/blt_tutorial/tpls/spack/opt/spack/darwin-elcapitan-x86_64/
—clang-7.3.0-apple/cmake-3.8.2-n2i4ijlet37i3jhmjfhzms2wo3b4ybcm/bin/cmake

daaadsdzaasadasdsasisatdsatdsasdsatdsdsdaadissddadadasdsatdaadidaddsadii
mpi from spack
#HRARFRAAFRARFAAAFAAFRAAFRAAFRARFRARFRAAFRARFRAAFRAAF A AR AR FRAAFHAAAS
set (ENABLE_MPI ON CACHE PATH "")

set (MPI_BASE_DIR "/Users/harrison37/Work/blt_tutorial/tpls/spack/opt/spack/darwin-
—elcapitan-x86_64/clang-7.3.0-apple/mpich-3.2-yc7ipshe7e3wdohtgjtms2agecxruavw/bin"
—CACHE PATH "")

set (MPI_C_COMPILER "S${MPI_BASE_DIR}/mpicc" CACHE PATH "")
set (MPI_CXX_COMPILER "${MPI_BASE_DIR}/mpicxx" CACHE PATH "")
set (MPIEXEC "${MPI_BASE_DIR}/mpiexec" CACHE PATH "")

[z eI E e Ee eSS T EEEEE LS LR LS E
Cuda Support (standard osx cuda toolkit install)

tHEFHRAAAAAFFFRAAAAAFFFEAAAAAFFRRAAAAFFFRRAAAAFFFRAAA A FFFREAA A FFFRAAAA
set (ENABLE_CUDA ON CACHE BOOL "")

set (CUDA_TOOLKIT_ROOT_DIR "/Developer/NVIDIA/CUDA-8.0/" CACHE PATH "")

(continues on next page)

4.1. User Tutorial 25

42

43

44

45

46

47

48

49

50

51

52

BLT Tutorial Guide

(continued from previous page)

set (CUDA_BIN_DIR "/Developer/NVIDIA/CUDA-8.0/bin/" CACHE PATH "")

AHAFHAFHAHAF AR F AR AR AR FA AR R AR FAF R FAF A HAF A HAF A A AR F AR

sphinx from spack

#tHE#AF A HAF AR A AR A A EAFE AR F AR F AR AR AR AR A A A

set (SPHINX_EXECUTABLE "/Users/harrison37/Work/blt_tutorial/tpls/spack/opt/spack/
—darwin-elcapitan—-x86_64/clang-7.3.0-apple/python-2.7.13-

—Jjmhznopgz2j5zkmuz jyggboyxnxtc653/bin/sphinx-build" CACHE PATH "")

FHARFAAAAARAAAAA AR A AR HARRH AR A RRFARAA AR A AA AR AR A AR H AR A A AR A AR AR

doxygen from spack
#EFAFAAAFAAAAARFARARARAAFAAARAAFAHA A A AAA R A AHA A A AA AR A HA RS

set (DOXYGEN_EXECUTABLE "/Users/harrison37/Work/blt_tutorial/tpls/spack/opt/spack/
—darwin-elcapitan—-x86_64/clang-7.3.0-apple/doxygen—-1.8.12—
—mjid3fudhxuu6bisSirshpihkwwucn7rv/bin/doxygen" CACHE PATH "")

4.1.5 Importing Targets

One key goal for BLT is to simplify the use of external dependencies and libraries when building your project. To
accomplish this, BLT provides a DEPENDS_ON option for the blt_add_library and blt_add_executable macros that
supports both your own projects CMake targets and imported targets. We have logically broken this topic into two
groups:

Common HPC Dependencies Dependencies such as MPI, CUDA, HIP, and OpenMP, are bundled and ready to use
included with BLT as regular named CMake targets. For example, just adding openmp to any DEPENDS_ON
will add the necessary OpenMP compiler and link flags to any target.

Third Party Libraries These are external libraries that your project depend on, such as Lua. They are imported into
your project in different ways depending on the level of CMake support provided by that project. BLT provides
a macro, blt_import_library, which allows you to bundle all necessary information under a single name. Some
projects properly export their CMake targets and only need to be imported via a call to include ().

Common HPC Dependencies

BLT creates named targets for the common HPC dependencies that most HPC projects need, such as MPI, CUDA,
HIP, and OpenMP. Something BLT assists it’s users with is getting these dependencies to interoperate within the same
library or executable.

As previously mentioned in Adding Tests, BLT also provides bundled versions of GoogleTest, GoogleMock,
GoogleBenchmark, and FRUIT. Not only are the source for these included, we provide named CMake targets for
them as well.

BLT’s mpi, cuda, cuda_runtime, hip, hip_runtime,and openmp targets are all defined via the
blt_import_library macro. This creates a true CMake imported target that is inherited properly through the CMake’s
dependency graph.

Note: BLT also supports exporting its third-party targets via the BLT_EXPORT_THIRDPARTY option. See Export-
ing Targets for more information.

You have already seen one use of DEPENDS_ON for a BLT dependency, gtest, in test_1:

26 Chapter 4. Authors

BLT Tutorial Guide

blt_add_executable (NAME test_1
SOURCES test_1.cpp
DEPENDS_ON calc_pi gtest)

MPI

Our next example, test_2, builds and tests the calc_pi_mpi library, which uses MPI to parallelize the calculation
over the integration intervals.

To enable MPI, we set ENABLE_MPI,MPI_C_COMPILER, and MPI_CXX_COMPILER in our host config file. Here
is a snippet with these settings for LLNL’s Pascal Cluster:

set (ENABLE_MPI ON CACHE BOOL "")

set (MPI_HOME "/usr/tce/packages/mvapich2/mvapich2-2.3-gcc-4.9.3/")
set (MPI_C_COMPILER "${MPI_HOME}/bin/mpicc" CACHE PATH "")

set (MPI_CXX_COMPILER "S${MPI_HOME}/bin/mpicxx" CACHE PATH "")

set (MPI_Fortran COMPILER "${MPI_HOME}/bin/mpif90" CACHE PATH "")

Here, you can see how calc_pi_mpi and test_2 use DEPENDS_ON:

blt_add_library(NAME calc_pi_mpi
HEADERS calc_pi_mpi.hpp calc_pi_mpi_exports.h
SOURCES calc_pi_mpi.cpp

DEPENDS_ON mpi)

if (WIN32 AND BUILD_SHARED_LIBS)

target_compile_definitions (calc_pi_mpi PUBLIC WIN32_SHARED_LIBS)
endif ()

blt_add_executable (NAME test_2
SOURCES test_2.cpp
DEPENDS_ON calc_pi calc_pi_mpi gtest)

For MPI unit tests, you also need to specify the number of MPI Tasks to launch. We use the NUM_MPI_TASKS
argument to blt_add_test macro.

blt_add_test (NAME test_2
COMMAND test_2
NUM_MPI_TASKS 2) # number of mpi tasks to use

As mentioned in Adding Tests, GoogleTest provides a default main () driver that will execute all unit tests defined in
the source. To test MPI code, we need to create a main that initializes and finalizes MPI in addition to Google Test.
te